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Second-harmonic generation in one-dimensional photonic edge waveguides
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Diffraction losses in one-dimensional photonic crystal~PC! waveguides are the primary limitation on
second-harmonic~SH! conversion efficiency. By using a finite difference time domain~FDTD! code taking
into account second-order nonlinear polarization, we investigated these losses numerically, particularly at the
SH wavelength. We propose an efficient SH conversion scheme in AlxGa12xAs/air-etched waveguides. An
analytical model is used to extrapolate the conversion efficiency to a number of periods for which time
consumption makes the FDTD codes unsuitable.
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I. INTRODUCTION

The use of dispersive properties of stratified media w
proposed very early in the history of nonlinear optics a
means of either phase-matched or enhanced second-
nonlinear interactions@1,2#. More recently, two importan
breakthroughs have renewed the interest in nonlinear st
fied media. First, analytical and numerical approaches
now able to describe second-order nonlinear interaction
finite stratified media@3,4#; second, there has been treme
dous evolution in micro- and nanotechnologies. They
now able to produce structures with a one-~1D! or two-
dimensional~2D! periodicity smaller than the nonlinearly in
teracting wavelengths@5#. For instance, in a recent paper w
experimentally demonstrated that it is possible to achi
phase matching and field enhancement simultaneously by
gineering the dispersive properties of a 1D-periodic stratifi
medium composed of a low refractive index linear mate
and a high-index nonlinear material@6#. These combined ef
fects were exploited to achieve a second-harmonic exte
conversion efficiency of 0.1% with a fundamental field~FF!
pulse peak power of 8 kW incident on a structure constitu
of 18 periods of AlxGa12xAs/AlOx ~respectively the nonlin-
ear and linear layers!. Its total length is as short as 4.9mm.
Moreover, by comparing the results obtained for seve
equivalent structures having different numbers of unit ce
the second-harmonic efficiency was demonstrated to g
faster than the fifth power of the structure length. This d
pendence of second-harmonic generation~SHG! efficiency,
now well understood theoretically@7#, is far better than the
usual quadratic behavior associated with second-order
linear process and opens the way to ultrashort wavelen
converters.

In this context, it is of primary interest to consider th
possibility of combining the above mentioned advantages
sociated with nonlinear periodic stratified structures a
those associated with a waveguided operation. Waveguid
in 1D or 2D structures, offers indeed a twofold advantage
allows a supplementary field enhancement due to transv
field confinement and it avoids problems associated with
1063-651X/2003/68~6!/066617~7!/$20.00 68 0666
s
a
der

ti-
re
in
-
e

e
n-
d
l

al

d

l
,
w
-

n-
th

s-
d
g,
it
se
e

eventual spatial walk-off between the interacting fields d
to non-null incident angle. In AlxGa12xAs waveguides
~WGs! it also allows one to benefit from the highest value
the quadratic nonlinear tensor@8#. Nevertheless, guided op
eration introduces new drawbacks associated, in particu
with the need to achieve guiding at two very distant wav
lengths such as those of the FF and the SH. Also, the us
stratified media, with a high contrast of indices between
linear and nonlinear layers, could induce an additional sou
of losses, particularly at SH wavelength. These intuitive
guments show that special care should be taken in the o
mization of the field confinement at second-harmonic wa
length, in order to avoid or minimize radiative losses@9#.
This is particularly true in the case where the seco
harmonic frequency is above the light cone and is ea
coupled to radiative modes@10#. The problem of modes
above the light cone was recently addressed in detail in
linear regime by Lalanne@11#, but its consequences in th
nonlinear regime have been neglected in the literature so

In this paper, we transpose the ideas previously dem
strated in vertical structures to a 1D-periodic air/AlxGa12xAs
waveguide able to phase-match the nonlinear interaction
to enhance both the FF and SH. A nonlinear 2D finite diff
ence time domain~NL FDTD! code is used to predict th
SHG efficiency in such a structure. The role of losses at
SH frequency is discussed for different waveguide thic
nesses. More than 5% SHG conversion efficiency is p
dicted for an optimized 5-mm-long structure excited by a FF
with a peak power of 600 W. We finish the discussion of t
potential of the considered structure by introducing an a
lytical model that considers the segmented waveguide a
doubly resonant cavity.

II. NONLINEAR 1D-PC WAVEGUIDE STRUCTURE AND
LINEAR PROPERTIES

A schematic view of a typical NL 1D-PC WG structure
represented in Fig. 1. The structure could be obtained
epitaxial growth on a GaAs@001#–oriented substrate. It is
composed of an N-periods Bragg grating oriente
©2003 The American Physical Society17-1
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along the @110# crystallographic axis deeply etched in a
Al xGa12xAs planar waveguide. The waveguide is compos
of a substrate of Al0.5Ga0.5As, a nonlinear layer of
Al0.3Ga0.7As with a nonlinear effective susceptibility ofd14
5120 pm/V around 1.55mm, and air; in thez direction the
refractive index is homogeneous. TheL-periodic Bragg grat-
ing features aredNL and dL , respectively, the length of th
nonlinear material and the length of the air gaps. T
Al0.3Ga0.7As layer thickness and air-gap depth areh andH.
Evidently, as is the case in bulk 1D-periodic structures,
linear and nonlinear behavior of the NL 1D-PC WG strong
depend ondNL and dL . In the case of WG operation, the
also depend on theh and H values, which determine th
transverse field confinement and diffraction.

As in our previous work in planar Bragg structures@6#,
we design the NL 1D-PC WG so as to have the FF reson
with the first transmission peak on the right side~in wave-
length! of the first-order band gap. This choice is not ar
trary since it allows an important FF enhancement. In turn
imposes the spectral position of the SH. Indeed, the Bl
phase accumulated by the FF is (p/N)(N21). In order to
ensure phase matching, the SH should escape the structu
the second transmission peak on the right side of the sec
order band gap. At this peak the accumulated Bloch phas
(p/N)(2N22), exactly the one needed for phase match
@4#. In the following the NL 1D-PCs are designed under su
conditions for a FF polarized parallel to thez direction ~see
Fig. 1! and a SH polarized in the@x,y# plane. These polariza
tions allow exploiting the maximum value of the secon
order nonlinear tensor. Note that by changing the numbe
periods and/orh and H, the conditions of the double reso
nance are modified. In order to avoid any misalignment
the double resonance and to keep the nonlinear mat
thickness constant, we force the value of the index of refr
tion of the nonlinear material (Al0.3Ga0.7As) at SH in the
calculations.

We use a FDTD@12# code to analyze the linear propertie
of the NL 1D-PC structures. We first consider a structu
defined by dNL5150 nm, dL595 nm, h51 mm, and H
51.8mm. Note that the waveguide supports two modes
FF wavelength and three at SH wavelength. In Fig. 2
represented reflection and transmission linear spectra fo
first mode around the FF@Fig. 2~a!# and the SH@Fig. 2~b!#
wavelengths, indicated by the arrows. The number of peri
is N58. Figures 2~a! and 2~b! clearly show the usual photo
nic band gaps~PBGs! and lateral transmission peaks. It al

FIG. 1. Structure parameters.@001# corresponds to they axis
and@110# to thex axis.dL anddNL are, respectively, the lengths o
the linear and the nonlinear layers. Al0.3Ga0.7As and Al0.5Ga0.5As
are represented in light and dark gray.
06661
d

e

e

nt

-
it
h

e at
d-
is

g
h

-
of

f
ial
c-

e

t
e
he

s

appears that the stop bands are not totally flat and the re
tion peak does not attain a value of unity. These features
more pronounced at the SH wavelength and essentially a
the detrimental role played by losses. As the number of
riods increases the transmission peaks become sharper
lustrated, around the SH wavelength, in Fig. 3 forN510, 12,
15, and 20. At the same time the transmission and reflec
peaks start to vanish and the first transmission peak at
right side of the PBG edge almost disappears whenN520.

These effects are essentially due to diffraction losses in
at frequencies situated above the light cone~in our case, the
etching depth is sufficient to prevent leakage toward
Al0.5Ga0.5As substrate!. One can also remark that the pea
close to the PBG edge are principally affected. This eff
can be understood as follows. To each transmission pea
associated an increase of the density of optical mo
~DOMs! with respect to that of a homogeneous medium h
ing equivalent macroscopic constants@13#. This increase of
photon lifetime at transmission peaks could be viewed as
effect of the resonator distributed over the whole Bra
structure. The sharpness of transmission peaks situated

FIG. 2. Coefficients of transmission~T! ~solid line! and reflec-
tion ~R! ~dashed line! of the eight-periodh51 mm structure around
the FF wavelength~a! and the SH wavelength~b!.

FIG. 3. Coefficients of transmission~T! ~solid line! and reflec-
tion ~R! ~dashed line! of the 10-, 12-, 15-, and 20-periodh51 mm
structures around the SH wavelength.
7-2
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SECOND-HARMONIC GENERATION IN ONE- . . . PHYSICAL REVIEW E 68, 066617 ~2003!
to the PBG edge reveals, at these wavelengths, a
equivalentQ factor of the distributed resonator. This mea
that the number of semiconductor/air interfaces to which
SH is sensitive is substantially increased by the numbe
round trips in the distributed resonator. As a consequence
SH losses grow with theQ factor. We will come back to the
cavity analogy in the last section.

We have represented in Fig. 4 the spatial field profile
the FF ~first transmission peak at the right side of the fi
PBG edge! and SH~second transmission peak at the rig
side of the second PBG edge! wavelengths for the 20-perio
structure. The FF presents the expected symmetric local
behavior. The SH is expected to have two equivalent sy
metric lobes, whereas Fig. 4 clearly shows a spatial distr
tion highly distorted by the presence of losses. This is ess
tially due to a strong coupling with a dissipative reserv
that breaks the symmetry of the system.

As we will show later on, diffraction losses and their e
fect of washing out the transmission resonances and dis
ing the SH are extremely detrimental to SHG efficiency. T
losses are essentially governed by three factors havin
combined effect: mode size, energy with respect to the li
cone, and filling factor. Different avenues are offered in or
to diminish diffraction losses at the SH wavelength. Amo
them, mode size enlargement appears as the most direc
lution compatible with the constraints imposed by pha
matching and FF and SH field enhancement. Indeed,
phase matching is obtained for a SH frequency located ab
the light cone. A possible way to enlarge the mode size i
increase the WG thickness.

In the following we consider the effect of the increase
WG thickness. Keeping in mind the aim of an experimen
implementation of the approach we have chosenH53 mm
for the air-gap depths. These values are compatible with s
of the art technology in AlxGa12xAs compounds. In Fig. 5
are represented forN510, 12, 15, and 20, the calculate
reflection and transmission linear spectra around the
wavelength~first mode! for h52 mm, dNL5150 nm, and
dL595 nm. Note that the waveguide still supports tw

FIG. 4. Spatial field distribution at FF and SH phase-match
wavelengths in the 20-periodh51 mm structure. The thick line
represents the spatial distribution and the thin line the refrac
index.
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modes at FF wavelength, but five at SH wavelength. In c
trast to Fig. 3, flat stop bands and well defined transmiss
and reflection resonances are still observed forN515 and
20, demonstrating the diminution of losses as the mode
is increased. Note that, in the simulations, the input field i
short pulse whose spectral extension allows one to calcu
the linear scattering properties of the structure over a w
range of wavelengths. In Fig. 5, the central wavelength of
pulse is 775 nm. Far from this value, the field amplitu
might be too small to maintain the numerical accuracy. T
is the case around 700 nm where the normalized reflecti
spectrum is greater than unity. We represented in Fig. 6
spatial field distribution obtained at FF and SH wavelengt
In the present case, both FF and SH profiles are clos
those optimizing the overlap between their product and
nonlinear susceptibility@3,7#. We stress that losses at S
frequency are not related to a mode conversion but co
from the transverse extension of the mode.

d

e

FIG. 5. Coefficients of transmission~T! ~solid line! and reflec-
tion ~R! ~dashed line! of the 10-, 12-, 15-, and 20-periodh52 mm
structures around the SH wavelength.

FIG. 6. Spatial field distribution at FF and SH phase-match
wavelengths of the 20-periodh52 mm structure. The thick line
represents the spatial distribution and the thin line the refrac
index.
7-3
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III. NONLINEAR OPERATION OF 1D PCS

As in the linear case, a nonlinear 2D FDTD code seem
be the more complete way to describe SHG in structu
such as the 1D-PC waveguides. 2D FDTD was only rece
extended to include second-order nonlinear interactions
2D structures by Shiet al. @14#. In Ref.@14# the second-orde
nonlinear interaction is considered in the presence of
depletion and cascaded second-order nonlinearity. The c
matic dispersion is taken into account recursively. T
method is thus of general interest at the price of tim
consuming codes well adapted to analyze SHG in reali
1D or 2D structures, periodical or not. Nevertheless, it
hardly able to attack the difficult and time-consuming pro
lem of optimization of the geometrical parameters; in ad
tion, it applies only to a scalar interaction.

We recently developed a NL FDTD method that is able
deal with a vectorial nonlinear interaction and presents a
sonable computational time at the expense of loosing ge
ality. In particular, the method works in the nondeplet
pump approximation and neglects intrapulse chromatic
persion@15#. It is based on the implementation of two para
lel linear FDTD codes, the first operating at FF wavelen
and the second at SH wavelength. The quadratic nonlinea
is taken into account only for the SH, which is not coupl
back to the FF wavelength. Chromatic dispersion is con
ered simply by taken the actual refractive index at FF and
wavelengths. This artificial separation of FF and SH pro
gation allows one to easily identify FF and SH distribution

In the particular case considered here, due to the sec
order susceptibility tensor of AlxGa12xAs, following the Yee
algorithm @12# the equation of SH evolution reads

Hz,i 11/2,j 11/2
SH,n11/2 5Hz,i 11/2,j 11/2

SH,n21/2 1
Dt

m0D
~Ey,i , j 11/2

SH,n 2Ey,i 11, j 11/2
SH,n

1Ex,i 11/2,j 11
SH,n 2Ex,i 11/2,j

SH,n !, ~1a!

Ex,i 11/2,j
SH,n11 5Ex,i 11/2,j

SH,n 1
Dt

« i , j
SHD

~Hz,i 11/2,j 11/2
SH,n11/2 2Hz,i 11/2,j 21/2

SH,n11/2 !,

~1b!

Ey,i , j 11/2
SH,n11 5Ey,i 11/2,j

SH,n 1
Dt

« i j
SHD

~Hz,i 21/2, j 11/2
SH,n11/2

2Hz,i 11/2, j 11/2
SH,n11/2 !

1

« i , j
SH~Py,i , j 11/2

~2!n11/22Py,i , j 11/2
~2!,n21/2!,

~1c!

wherex, y, andz are defined in Fig. 1,D is the spatial step
Dt5D/2c is the temporal step (D512.5 nm in all our simu-
lations!, and« i j

SH is the dielectric constant at~i,j! for the SH.
Note that this numerical method could be improved us
two different computation grids and steps for the FF and S
In this case, the total computation time and the memory
age could be decreased by a factor of 2. In expression~1c!
the third term on the right side is the non-null component
the nonlinear polarizationP(2)5 ŷ«0d14(Ez

FF)2, whereEz
FF is
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the electric field polarized along thez direction at FF fre-
quency, evaluated via the usual FDTD method.

In Fig. 7 is represented, for the optimized structureh
52 mm, 20 periods!, the normalized spectrum of the S
generated. The input FF pulse duration is 75 fs, correspo
ing to a full width at half maximum spectrum of 45 nm. Th
use of such a short pulse is a practical way to obtain, after
proper quadratic normalization by the FF envelope,
equivalent of the phase-matching curve without varying
FF central wavelength. Two peaks clearly appear~at 757.9
and 761.4 nm!; they correspond to the first two transmissio
resonances at the right side of the second PBG edge.
highest SHG is obtained at the 761.4 nm peak, the one
ensures phase matching. At this wavelength the gener
SH field distribution, represented in the inset of Fig. 7, fo
lows that of the linear field at the same frequency~see Fig.
6!. Note that an intense third peak, not represented in
figure, also appears at the wavelength of the third late
resonance. The relative value of these three peaks in
pulsed regime depends on the density of modes, ph
matching, spectral filtering, and group velocity mismat
@16#. We compare the SHG efficiency for the three res
nances in this configuration and in the stationary regime.
found that the efficiency associated with the second re
nance is 43 times larger than the efficiency associated w
the first and 100 times the efficiency associated with
third. In the following, we compare SHG efficiencies in th
stationary regime in order to avoid the effects associa
with spectral filtering and group velocity mismatch.

A crucial point to be considered is the evolution of th
SHG intensity as a function of the number of unit cells of t
NL 1D-PC WG. In a planar structure where losses can
neglected, the conjugated effect of phase matching and
hancement of DOMs leads to a second-harmonic efficie
growth that follows the sixth power of the structure leng
far better than the usual quadratic behavior associated
second-order nonlinear effects. In Fig. 8 is represented o
logarithmic scale the SHG efficiencyh as a function of the
number of unit cellsN, for the optimizedh52 mm ~circles!
and the nonoptimizedh51 mm ~squares! structures. The FF

FIG. 7. Transmission spectrum of the generated SH in the
period h52 mm structure. Inset: Spatial field distribution of th
generated SH. The thick line represents the spatial distribution
the thin line the refractive index.
7-4
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SECOND-HARMONIC GENERATION IN ONE- . . . PHYSICAL REVIEW E 68, 066617 ~2003!
peak power is 600 W, the mode extension in thez direction is
5 mm. The best linear fit of the dots is given by the full lin
One should stress that this result does not mean thatN could
be increased arbitrarily keeping the same slope for the c
version efficiency. Indeed, as the number of periods
creases, the lifetime of photons in the PBG structure at
wavelength increases as well and the effect of losses
become predominant. This is already the case for the non
timized sample.

IV. ANALYTICAL EQUIVALENT-CAVITY MODEL
AND DISCUSSION

In the previous sections we have shown how numer
simulation, via FDTD, of the nonlinear properties of the p
riodic waveguide is able to give precise information on t
role played by losses in the SHG efficiency. Time consum
tion makes the implementation of such numerical codes
suitable when the number of periods is further increased
N530 or more. In order to better understand the meaning
the numerical results obtained as well as to use them to
dict the SHG efficiency as the number of periods is furth
increased, we will introduce in this section a phenomenolo
cal approach that considers the periodical waveguide a
longitudinal cavity. This cavity represents the distribut
resonator, doubly resonant at the FF and the SH. We
refer to this approach as the equivalent-cavity model. T
internal SHG efficiencyh int in an equivalent cavity depend
on the accumulated fields at FF frequency@17#:

h int}~rv3L !2, ~2!

where rv,2v51/ng
v,2v is the normalized density of optica

modes@13# at the FF,SH frequencies andng
v,2v is the group

velocity. CallingL5NL the total length, one can rewrite th
conversion efficiency in terms of the equivalent-cavity lif
time at FF,SH frequenciestv,2v:

FIG. 8. SH conversion efficiency versus the number of peri
N of the structure on a logarithmic scale. The SHG efficiencies
the h51 and the 2mm structures are represented, respectively,
squares and circles. The linear fit of these efficiencies is also plo
as the dashed line for theh51 mm and as the solid line for the
h52 mm structures.
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vD 2

5~tv!2. ~3!

The cavity lifetimetv,2v can be written as

1

tv,2v 5
1

tL
v,2v 1

1

tR
v,2v , ~4!

where tL
v,2v is the longitudinal escape time andtR

v,2v the
coupling time with radiative modes. The latter is associa
with the losses at FF,SH frequencies. Using the preced
definitions the SHG efficiency is written as

h int}S tL
vtR

v

tR
v1tL

vD 2

. ~5!

The last equation is relevant for the internal SHG. Howev
as we detect only the guided part of the second-harmo
signal, the effective efficiency is given by

heff5h int

tR
2v

tR
2v1tL

2v }S tL
vtR

v

tR
v1tL

vD 2 tR
2v

tR
2v1tL

2v . ~6!

From Ref.@13#, for a lateral resonance in a multilayer stru
ture, we have the relationrv,2v}N2, which implies tL

v,2v

}N3. Note thattR
v,2v is to some extent independent of th

number of periods. Then, depending on the relative value
different relevant times, three asymptotic regimes can
identified:

~1! Negligible losses at both the FF and SH:tL
v!tR

v and
tL

2v!tR
2v ,

heff}~tL
v!2}N6.

~2! Negligible losses only at the FF:tL
v!tR

v and tL
2v

@tR
2v ,

heff}
~tL

v!2

tL
2v }N3.

~3! Losses at the FF and SH:tL
v@tR

v andtL
2v@tR

2v ,

heff}
1

tL
2v }

1

N3 .

In this equivalent-cavity model, the ratiotR
v,2v/(tR

v,2v

1tL
v,2v) can be related to the transmission coefficientsTv,2v

at resonances:

Tv,2v5S 1

11tL
v,2v/tR

v,2vD 5S 1

11N3/kv,2vD , ~7!

wherekv,2v is a constant.
We applied this model to the waveguide (h51 and 2mm!

studied numerically in the previous section. Using the res
of the linear FDTD code one can numerically obtain t
transmission coefficients at FF and SH frequencies. They
reported in Table I. For the deep etched waveguideTv is
close to unity over the whole range of the number of perio
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ed
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DUMEIGE et al. PHYSICAL REVIEW E 68, 066617 ~2003!
explored. This means that, in this case, losses can be
glected andtR

v→`. For the other situations, the consta
kv,2v, defined in Eq.~7!, can be inferred from a fit of nu
merical values obtained for the transmission coefficients.
results of the fit are also presented in Table I. The effec
SHG efficiency can now be expressed as

heff}N6S 1

11N3/kvD 2S 1

11N3/k2vD . ~8!

At this point, using only linear simulations, we know th
exact dependence of the SHG on the length structure.
only unknown parameter is the exact amplitude ofheff ,
which is determined by fitting the numerically calculat
SHG efficiency.

The results obtained for theh51 mm and theh52 mm
waveguides are represented by full lines in Figs. 9~a! and
9~b!, respectively. Squares represent the NL FDTD resu
The N6 asymptotic law and the usual quadratic law are a
represented in dotted and dashed lines, respectively.
equivalent-cavity model clearly shows that forN.20 the
SHG efficiency ofh51 mm waveguide saturates and d
creases below theN2 law, illustrating the regime where
losses in the FF and SH cannot be neglected. Conversely
h52 mm waveguide SHG efficiency increases with a slo
close to theN6 law, illustrating the situation where losses
the FF are negligible where those in the SH start to pla
role.

Finally, two important points concerning the validity o
the analytical approach should be stressed.~1! As is the case
in the NL FDTD numerical approach, the FF depletion
neglected in the equivalent-cavity model. This limits the v
lidity of the model to efficiencies below 15%.~2! For theh
52 mm structure losses were neglected at the FF freque
as the number of periods is increased, such losses will
come measurable and can no longer be neglected. Neve
less, it is reasonable to consider that, taking into account
preceding restrictions, analytical results give a good estim
of the conversion efficiency. In particular, a SHG convers
efficiency of the order of 15% is predicted, with a FF pow
of 600 W for structures ofN,30 corresponding to a maxi
mal total length of 7.5mm.

TABLE I. Value of the linear transmission for the first guide
mode at FF and SH frequencies.kv,2v are inferred using Eq.~7!
and numerical data.

N

h51 mm
h52 mm

T2vTv T2v

8 0.95 0.76 0.95
10 0.93 0.74 0.91
12 0.89 0.62 0.85
15 0.83 0.50 0.81
20 0.71 0.20 0.65

kv515 194 k2v52668 k2v513 685
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V. CONCLUSION

In conclusion we propose and optimize a 1D-period
photonic edge dual wavelength WG operating as an effic
SH generator. We analyze the role of structure parame
and diffractive losses in such a waveguide using a NL
FDTD code. A SHG efficiency of 5%, for 600 W FF pea
power, is predicted in a technologically realistic semicond
tor 20-period, 5-mm-long structure. A phenomenologica
model is proposed in order to evaluate the conversion e
ciency as the number of periods is further increased. I
shown that if the losses at FF frequency are negligible
conversion efficiency can be further improved by a siza
amount. The model provides a simple tool to extrapolate
results obtained with the numerical code to a number of
riods for which time consumption makes FDTD not suitab

ACKNOWLEDGMENT

This work was supported by Action Concerte´e Nano-
sciences ‘‘CPNonlin.’’

FIG. 9. Conversion efficiency predicted by the equivalent-cav
model~full line! and the NL FDTD code~squares!. The asymptotic
N6 law and the usual quadratic law are represented~dotted and
dashed lines, respectively!. ~a! and~b! correspond to theh51 and 2
mm structures, respectively.
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