PHYSICAL REVIEW E 68, 066617 (2003
Second-harmonic generation in one-dimensional photonic edge waveguides
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Diffraction losses in one-dimensional photonic crystRIC) waveguides are the primary limitation on
second-harmoni¢SH) conversion efficiency. By using a finite difference time dom@DTD) code taking
into account second-order nonlinear polarization, we investigated these losses numerically, particularly at the
SH wavelength. We propose an efficient SH conversion scheme,@afl,As/air-etched waveguides. An
analytical model is used to extrapolate the conversion efficiency to a number of periods for which time
consumption makes the FDTD codes unsuitable.
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[. INTRODUCTION eventual spatial walk-off between the interacting fields due
to non-null incident angle. In AGa _,As waveguides

The use of dispersive properties of stratified media wagWGs) it also allows one to benefit from the highest value of
proposed very early in the history of nonlinear optics as @he quadratic nonlinear tensp8]. Nevertheless, guided op-
means of either phase-matched or enhanced second-ord@@tion introduces new drawbacks associated, in particular,
nonlinear interactiong1,2]. More recently, two important With the need to achieve guiding at two very distant wave-
breakthroughs have renewed the interest in nonlinear stratengths such as those of the FF and the SH. Also, the use of
fied media. First, ana|ytica| and numerical approaches arétratiﬁed media, with a hlgh contrast of indices between the
now able to describe second-order nonlinear interactions ifinear and nonlinear layers, could induce an additional source
finite stratified medig3,4]; second, there has been tremen-Of losses, particularly at SH wavelength. These intuitive ar-
dous evolution in micro- and nanotechnologies. They ard&uments show that special care should be taken in the opti-
now able to produce structures with a or@D) or two- mization of the field confinement at second-harmonic wave-
dimensional2D) periodicity smaller than the nonlinearly in- length, in order to avoid or minimize radiative losqéd.
teracting wavelengthis]. For instance, in a recent paper we This is particularly true in the case where the second-
experimentally demonstrated that it is possible to achiev&armonic frequency is above the light cone and is easily
phase matching and field enhancement simultaneously by efoupled to radiative modefl0]. The problem of modes
gineering the dispersive properties of a 1D-periodic stratified@Pove the light cone was recently addressed in detail in the
medium composed of a low refractive index linear materiallinear regime by Lalanngll], but its consequences in the
and a high-index nonlinear mater{#]. These combined ef- nonlinear regime have been neglected in the literature so far.
fects were exploited to achieve a second-harmonic external In this paper, we transpose the ideas previously demon-
conversion efficiency of 0.1% with a fundamental figkF) ~ Strated in vertical structures to a 1D-periodic aig@é, —,As
pulse peak power of 8 kW incident on a structure constitutedvaveguide able to phase-match the nonlinear interaction and
of 18 periods of AEGaﬂ.foS/AIOX (respective]y the nonlin- to enhance both the FF and SH. A nonlinear 2D finite differ-
ear and linear layeyslts total length is as short as 48m.  ence time domaifNL FDTD) code is used to predict the
Moreover, by Comparing the results obtained for SeveraSHG EfﬁCiency in such a structure. The role of losses at the
equivalent structures having different numbers of unit cellsSH frequency is discussed for different waveguide thick-
the second-harmonic efficiency was demonstrated to groWesses. More than 5% SHG conversion efficiency is pre-
faster than the fifth power of the structure length. This dedicted for an optimized 3:m-long structure excited by a FF
pendence of second-harmonic genera‘[ﬁSHG) efﬁciency, with a peak power of 600 W. We finish the discussion of the
now well understood theoretically7], is far better than the Potential of the considered structure by introducing an ana-
usual quadratic behavior associated with second-order nofytical model that considers the segmented waveguide as a
linear process and opens the way to ultrashort wavelengtoubly resonant cavity.

converters.
'”.g‘l'.f C?”teXtB.'t. IS ?g p”k;nary '”tetr.eSt tdo %O”S'?er the || NONLINEAR 1D-PC WAVEGUIDE STRUCTURE AND
possipility or compbining the above mentioned advantages as- LINEAR PROPERTIES

sociated with nonlinear periodic stratified structures and

those associated with a waveguided operation. Waveguiding, A schematic view of a typical NL 1D-PC WG structure is
in 1D or 2D structures, offers indeed a twofold advantage: itepresented in Fig. 1. The structure could be obtained by
allows a supplementary field enhancement due to transverspitaxial growth on a GaA$§001]-oriented substrate. It is
field confinement and it avoids problems associated with theomposed of an N-periods Bragg grating oriented
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FIG. 1. Structure parameterf001] corresponds to thg axis 0.6
and[110] to thex axis.d, anddy, are, respectively, the lengths of :J_f 0.4
the linear and the nonlinear layers. AGa -As and ApGa sAS 0.2 Y
are represented in light and dark gray. 0.0 T L T
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. . . I h
along the[110] crystallographic axis deeply etched in an wavelength (nm)

Al,Ga ,As planar waveguide. The waveguide is composed FIG. 2. Coefficients of transmissidfT) (solid line) and reflec-
of a substrate of AlGa&sAs, a nonlinear layer of tion (R) (dashed lingof the eight-perioch=1 um structure around
Al Ga 7As with a nonlinear effective susceptibility of,,  the FF wavelengtlta) and the SH wavelengttb).

=120 pm/V around 1.5%m, and air; in thez direction the

refractive index is homogeneous. Theperiodic Bragg grat-  appears that the stop bands are not totally flat and the reflec-
ing features arely_ anddy_, respectively, the length of the tjon peak does not attain a value of unity. These features are
nonlinear material and the length of the air gaps. Themore pronounced at the SH wavelength and essentially attest
Alg Gy As layer thickness and air-gap depth &randH.  the detrimental role played by losses. As the number of pe-
Evidently, as is the case in bulk 1D-periodic structures, th&jods increases the transmission peaks become sharper as il-
linear and nonlinear behavior of the NL 1D-PC WG strongly |ystrated, around the SH wavelength, in Fig. 3¥or 10, 12,
depend ordy. anddy . In the case of WG operation, they 15 and 20. At the same time the transmission and reflection
also depend on thé and H values, which determine the peaks start to vanish and the first transmission peak at the
transverse field confinement and diffraction. right side of the PBG edge almost disappears wen20.

As in our previous work in planar Bragg structurfe, These effects are essentially due to diffraction losses in air
we design the NL 1D-PC WG so as to have the FF resonanit frequencies situated above the light céimeour case, the
with the first transmission peak on the right sidle wave-  etching depth is sufficient to prevent leakage toward the
length of the first-order band gap. This choice is not arbi'NO,sGéb,sAS substrate One can also remark that the peaks
fcrary since it allows an impqrtant FF enhancement. In turn, ijose to the PBG edge are principally affected. This effect
imposes the spectral position of the SH. Indeed, the Bloclgan be understood as follows. To each transmission peak is
phase accumulated by the FF is/(N)(N—1). In order to  associated an increase of the density of optical modes
ensure phase matching, the SH should escape the structuregioMs) with respect to that of a homogeneous medium hav-
the second transmission peak on the rlght side of the Seconﬂ"[g equiva|ent macroscopic COﬂStalﬁm]. This increase of
order band gap. At this peak the accumulated Bloch phase ishoton lifetime at transmission peaks could be viewed as an
(7m/N)(2N—2), exactly the one needed for phase matchingeffect of the resonator distributed over the whole Bragg

[4]. In the following the NL 1D-PCs are designed under suchstructure. The sharpness of transmission peaks situated close
conditions for a FF polarized parallel to tkedirection (see

Fig. 1) and a SH polarized in the,y] plane. These polariza-
tions allow exploiting the maximum value of the second-
order nonlinear tensor. Note that by changing the number of
periods and/oh and H, the conditions of the double reso-
nance are modified. In order to avoid any misalignment of — 94
the double resonance and to keep the nonlinear materia 0.2
thickness constant, we force the value of the index of refrac- 0.
tion of Fhe nonlinear material (pkG& -As) at SH in the 10
calculations. 08l "
We use a FDTO12] code to analyze the linear properties “IN=15
of the NL 1D-PC structures. We first consider a structure 528
defined by dy, =150 nm, d, =95 nm, h=1um, and H o4
=1.8um. Note that the waveguide supports two modes at 02
FF wavelength and three at SH wavelength. In Fig. 2 are 00
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represented reflection and transmission linear spectra for the Waveleong’?ﬁ (7::}1)800 OOV\;;%eﬂgné?ﬁ (gsr%)soo

first mode around the FfFig. 2(a)] and the SHFig. 2(b)]

wavelengths, indicated by the arrows. The number of periods FIG. 3. Coefficients of transmissiai) (solid line) and reflec-
is N=8. Figures 2a) and 2b) clearly show the usual photo- tion (R) (dashed lingof the 10-, 12-, 15-, and 20-peridt=1 um
nic band gap$PBGS and lateral transmission peaks. It also structures around the SH wavelength.
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FIG. 4. Spatial field distribution at FF and SH phase-matched FIG. 5. Coefficients of transmissid(T) (solid line) and reflec-
wavelengths in the 20-period=1 um structure. The thick line tion (R) (dashed lingof the 10-, 12-, 15-, and 20-peridt=2 um
represents the spatial distribution and the thin line the refractivétructures around the SH wavelength.
index.

to the PBG edge reveals, at these wavelengths, a higWOdeS at_ FF wavelength, but five at SH Wa_lvelength. In_ con-
equivalentQ factor of the distributed resonator. This meanstast t© Fig. 3, flat stop bands and well defined transmission
that the number of semiconductor/air interfaces to which thénd reflection resonances are still observedNer15 and
SH is sensitive is substantially increased by the number of0, demonstrating the diminution of losses as the mode size
round trips in the distributed resonator. As a consequence tHg increased. Note that, in the simulations, the input field is a
SH losses grow with th@ factor. We will come back to the short pulse whose spectral extension allows one to calculate
cavity analogy in the last section. the linear scattering properties of the structure over a wide
We have represented in Fig. 4 the spatial field profile atange of wavelengths. In Fig. 5, the central wavelength of the
the FF(first transmission peak at the right side of the firstpulse is 775 nm. Far from this value, the field amplitude
PBG edgg and SH(second transmission peak at the right might be too small to maintain the numerical accuracy. This
side of the second PBG edgesavelengths for the 20-period is the case around 700 nm where the normalized reflectivity
structure. The FF presents the expected symmetric localizeshectrum is greater than unity. We represented in Fig. 6 the
behavior. The SH is expected to have two equivalent symspatial field distribution obtained at FF and SH wavelengths.
metric lobes, whereas Fig. 4 clearly shows a spatial distribump the present case, both FF and SH profiles are close to
tion highly distorted by the presence of losses. This is esseffhose optimizing the overlap between their product and the
tially due to a strong coupling with a dissipative reservoirponlinear susceptibility3,7. We stress that losses at SH

that breaks the symmetry of the system. ~ frequency are not related to a mode conversion but come
As we will show later on, diffraction losses and their ef- from the transverse extension of the mode.

fect of washing out the transmission resonances and distort-
ing the SH are extremely detrimental to SHG efficiency. The
losses are essentially governed by three factors having @
combined effect: mode size, energy with respect to the light'€
cone, and filling factor. Different avenues are offered in order
to diminish diffraction losses at the SH wavelength. Among ] ” H

1.0 F -1.0

b.u

them, mode size enlargement appears as the most direct s(z %57
lution compatible with the constraints imposed by phase.8
matching and FF and SH field enhancement. Indeed, her¢g 0.0- -
phase matching is obtained for a SH frequency located aboveg
the light cone. A possible way to enlarge the mode size is 10 g5 B
increase the WG thickness. S
In the following we consider the effect of the increase of
WG thickness. Keeping in mind the aim of an experimental
implementation of the approach we have chokea3 um 1.2 3 4 5 1.2 3 a4 5
for the air-gap depths. These values are compatible with statt X (Um) X (Um)
of the art technology in AlGa, _,As compounds. In Fig. 5
are represented foN=10, 12, 15, and 20, the calculated  FIG. 6. Spatial field distribution at FF and SH phase-matched
reflection and transmission linear spectra around the Sklavelengths of the 20-period=2 um structure. The thick line
wavelength(first mode for h=2 um, dy =150 nm, and represents the spatial distribution and the thin line the refractive
d =95 nm. Note that the waveguide still supports twoindex.

ribution (arb. units)

1.0 L

SH field Spatial dist

FF spat
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11l. NONLINEAR OPERATION OF 1D PCS 1.0 -
As in the linear case, a nonlinear 2D FDTD code seemsto = g / \
be the more complete way to describe SHG in structures & 084 g w0 te
such as the 1D-PC waveguides. 2D FDTD was only recently =3 g / \
extended to include second-order nonlinear interactions in £ 08 £°° <
2D structures by Stet al.[14]. In Ref.[14] the second-order & 3™ / <
nonlinear interaction is considered in the presence of FF & 041 % fxgmt t \
depletion and cascaded second-order nonlinearity. The chro- g j b
matic dispersion is taken into account recursively. This £ 024 J \
method is thus of general interest at the price of time- T ] ¢ 1Y
consuming codes well adapted to analyze SHG in realistic ~ @ 0.0-M. ...ccntll
1D or 2D structures, periodical or not. Nevertheless, it is 756 758 760 762 764

hardly able to attack the difficult and time-consuming prob-

lem of optimization of the geometrical parameters; in addi-

tion, it applies only to a scalar interaction. FIG. 7. Transmission spectrum of the generated SH in the 20-
We recently developed a NL FDTD method that is able toperiod h=2 um structure. Inset: Spatial field distribution of the

deal with a vectorial nonlinear interaction and presents a reagenerated SH. The thick line represents the spatial distribution and

sonable computational time at the expense of loosing genethe thin line the refractive index.

ality. In particular, the method works in the nondepleted

pump approximation and neglects intrapulse chromatic disthe electric field polarized along thedirection at FF fre-

persion[15]. It is based on the implementation of two paral- quency, evaluated via the usual FDTD method.

lel linear FDTD codes, the first operating at FF wavelength In Fig. 7 is represented, for the optimized structure (

and the second at SH wavelength. The quadratic nonlinearity 2 #m, 20 periods the normalized spectrum of the SH

is taken into account only for the SH, which is not coupledgenerated. The input FF pulse duration is 75 fs, correspond-

back to the FF wavelength. Chromatic dispersion is considing to a full width at half maximum spectrum of 45 nm. The

ered simply by taken the actual refractive index at FF and SHise of such a short pulse is a practical way to obtain, after the

wavelengths. This artificial separation of FF and SH propaProper quadratic normalization by the FF envelope, an

gation allows one to easily identify FF and SH distributions.€quivalent of the phase-matching curve without varying the
In the particular case considered here, due to the secon&F central wavelength. Two peaks clearly appesr757.9

order susceptibility tensor of ABa _,As, following the Yee ~and 761.4 nnj they c_orrespond to the first two transmission
algorithm[12] the equation of SH evolution reads resonances at the right side of the second PBG edge. The
highest SHG is obtained at the 761.4 nm peak, the one that

SH wavelength (nm)

At ensures phase matching. At this wavelength the generated
Ho a2 1= Ho o 1ot —A(Ei'i*j‘ﬂ,z— Eyily 12 SH field distribution, represented in the inset of Fig. 7, fol-
Ko lows that of the linear field at the same frequerisge Fig.
+Ef'?f1/2j+1—Ef'?f1/zj), (19  6). Note that an intense third peak, not represented in the
’ ’ ’ ’ figure, also appears at the wavelength of the third lateral
¢ resonance. The relative value of these three peaks in the
Ef'i-'fflzlj:Efli-Tllzj_'—S_H(Hfli-'jrnﬂzl/jallz_H?i-'fflzlljzfllz)i pulsed regime depends on the density of modes, phase
’ ’ ’ TogijA ' ' ’ ’ matching, spectral filtering, and group velocity mismatch
(1b)  [16]. We compare the SHG efficiency for the three reso-
nances in this configuration and in the stationary regime. We
S SHn At ini1e found that the efficiency associated with the second reso-
Eyii+12=Eyiviz;t 8_s__HA(|'|z,i'—1/2,j+1/2 nance is 43 times larger than the efficiency associated with
Y the first and 100 times the efficiency associated with the
SHn+ 12 1 onmi12 o@n-12 third. In the following, we compare SHG efficiencies in the
_Hz,i+1/2,i+1/2)ﬁ|(Py,i,J+1/2_ Pyili+12)s stationary regime in order to avoid the effects associated
" with spectral filtering and group velocity mismatch.
(10 A crucial point to be considered is the evolution of the

wherex, y, andz are defined in Fig. 1A is the spatial step,
At=A/2c is the temporal stepA=12.5 nm in all our simu-
lations, ande}}" is the dielectric constant &tj) for the SH.

SHG intensity as a function of the number of unit cells of the

NL 1D-PC WG. In a planar structure where losses can be
neglected, the conjugated effect of phase matching and en-
hancement of DOMs leads to a second-harmonic efficiency

Note that this numerical method could be improved usinggrowth that follows the sixth power of the structure length,
two different computation grids and steps for the FF and SHfar better than the usual quadratic behavior associated with
In this case, the total computation time and the memory ussecond-order nonlinear effects. In Fig. 8 is represented on a

age could be decreased by a factor of 2. In expres&ion

logarithmic scale the SHG efficiency as a function of the

the third term on the right side is the non-null component ofnumber of unit cellN, for the optimizedh=2 um (circles

the nonlinear polarizatioR® = §e,d.4(EH)?, whereE’F is

06661

and the nonoptimized=1 um (squarepstructures. The FF

7-4
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10+ L\2
] . — | =(9)2
Y h=2}lm nlntx( Va) (T ) . (3)
Q B h=1um o ) _
L Pad The cavity lifetimer“““ can be written as
> 7
g . 111 “
;g Tw,2w - TLLu,Zw Tg,Zw ’
[«)
Q@ where 72 is the longitudinal escape time ang? the
) 0.1+ . coupling time with radiative modes. The latter is associated
v with the losses at FF,SH frequencies. Using the preceding
8 10 20 definitions the SHG efficiency is written as
Number of unit cells 7070\ 2
| ETR 5)
FIG. 8. SH conversion efficiency versus the number of periods TTint o+ T (

N of the structure on a logarithmic scale. The SHG efficiencies of

theh=1 and the 2um structures are represented, respectively, byThe last equation is relevant for the internal SHG. However,
squares and circles. The linear fit of these efficiencies is also plotteds we detect only the guided part of the second-harmonic
as the dashed line for the=1 um and as the solid line for the signal, the effective efficiency is given by

h=2 um structures.

2w w_w 2w
R TLTR R 6)
peak power is 600 W, the mode extension inzlrection is et nlntTéw-i- 20\ ret 1) 2O+ (

5 um. The best linear fit of the dots is given by the full line.

One should stress that this result does not meanNteatuld ~ From Ref.[13], for a lateral resonance in a multilayer struc-
be increased arbitrarily keeping the same slope for the corture, we have the relatiop®?“«N?, which implies 7"["2“)
version efficiency. Indeed, as the number of periods in<cN3. Note thatfg'z‘” is to some extent independent of the
creases, the lifetime of photons in the PBG structure at Skthumber of periods. Then, depending on the relative values of
wavelength increases as well and the effect of losses willlifferent relevant times, three asymptotic regimes can be
become predominant. This is already the case for the nonopdentified:

timized sample. (1) Negligible losses at both the FF and SH< & and

IV. ANALYTICAL EQUIVALENT-CAVITY MODEL
AND DISCUSSION

In the previous sections we have shown how numerical (2 Negligible losses only at the FFzf<7j and
simulation, via FDTD, of the nonlinear properties of the pe->7:",
riodic waveguide is able to give precise information on the 2
role played by losses in the SHG efficiency. Time consump- o (7i) «N3
tion makes the implementation of such numerical codes un- et 72 '
suitable when the number of periods is further increased to
N=30 or more. In order to better understand the meaning of (3) Losses at the FF and SH{’> 73 and 77> 5°,
the numerical results obtained as well as to use them to pre-
dict the SHG efficiency as the number of periods is further
increased, we will introduce in this section a phenomenologi-
cal approach that considers the periodical waveguide as a
longitudinal cavity. This cavity represents the distributed!n this equivalent-cavity model, the ratiay /(5%
resonator, doubly resonant at the FF and the SH. We wilt- 72 can be related to the transmission coefficieFits”
refer to this approach as the equivalent-cavity model. Thet resonances:
internal SHG efficiencyy;,, in an equivalent cavity depends
on the accumulated fields at FF frequenty]: To20—

77eff°c(7'(lf)2°c N®.

1 1
oC oC
Neff T?Lw N 3

1
1+ N3/kw,2w>! (7)

1 —

1+ T‘L”'Z“’/Tg‘z“’ B
. w 2

i (pX L)%, @ wherek®?® is a constant.
) . . . _ We applied this model to the waveguide= 1 and 2um)
where p““’=1/vg*" is the normalized density of optical studied numerically in the previous section. Using the results
modes|[13] at the FF,SH frequencies an»@"z‘” is the group  of the linear FDTD code one can numerically obtain the
velocity. CallingL=NA the total length, one can rewrite the transmission coefficients at FF and SH frequencies. They are
conversion efficiency in terms of the equivalent-cavity life- reported in Table I. For the deep etched waveguideis
time at FF,SH frequencies”?*: close to unity over the whole range of the number of periods
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TABLE I. Value of the linear transmission for the first guided 10
mode at FF and SH frequenciesk®?® are inferred using Eq(7) ;@ a) :
and numerical data. = s ‘N°
Py N
2 .
h=1um 2 .
h=2pum S 6 )
N T TZw TZw HUT) :
8 0.95 0.76 0.95 2 4 P : e
10 0.93 0.74 0.91 % N equivalent cavity “N2
12 0.89 0.62 0.85 2 7 . model _ -
15 0.83 0.50 0.81 3 S i
=04 == :
20 0.71 0.20 0.65 w o 20 40 o0
k®=15194 k2©=2668 k?=13 685 Number of periods
25 :
explored. This means that, in this case, losses can be ne- ¢ b) 6
glected andrg—o. For the other situations, the constant - 20- ;N
k®2, defined in Eq.(7), can be inferred from a fit of nu- 2 : equivalent cavity
merical values obtained for the transmission coefficients. The -% ; model
results of the fit are also presented in Table I. The effective =
- @
SHG efficiency can now be expressed as o)
I
. 1 2 1 o\
oy _ -
7er™ N\ ToNo7ke | | T T ® 2 P
Q -
& -7
w 40 e

At this point, using only linear simulations, we know the
exact dependence of the SHG on the length structure. The
only unknown parameter is the exact amplitude mnf;,
which is determined by fitting the numerically calculated
SHG efficiency.

Number of periods

FIG. 9. Conversion efficiency predicted by the equivalent-cavity
model (full line) and the NL FDTD codésquarels The asymptotic
N® law and the usual quadratic law are represer{imtted and

The r_gsults obtained fotr ;Het)zlf ILILInI] and_thle:h=2 é;m:j dashed lines, respectivelya) and(b) correspond to thb=1 and 2
waveguides are represented by full lines in Fig&) &n um structures, respectively.

9(b), respectively. Squares represent the NL FDTD results.
The N® asymptotic law and the usual quadratic law are also
represented in dotted and dashed lines, respectively. The
equivalent-cavity model clearly shows that fbir>20 the
SHG efficiency ofh=1um waveguide saturates and de- In conclusion we propose and optimize a 1D-periodic
creases below thé? law, illustrating the regime where photonic edge dual wavelength WG operating as an efficient
losses in the FF and SH cannot be neglected. Conversely, ti#H generator. We analyze the role of structure parameters
h=2 um waveguide SHG efficiency increases with a slopeand diffractive losses in such a waveguide using a NL 2D
close to theN® law, illustrating the situation where losses in FDTD code. A SHG efficiency of 5%, for 600 W FF peak
the FF are negligible where those in the SH start to play gower, is predicted in a technologically realistic semiconduc-
role. tor 20-period, 5um-long structure. A phenomenological
Finally, two important points concerning the validity of model is proposed in order to evaluate the conversion effi-
the analytical approach should be stressgHAs is the case ciency as the number of periods is further increased. It is
in the NL FDTD numerical approach, the FF depletion isshown that if the losses at FF frequency are negligible the
neglected in the equivalent-cavity model. This limits the va-conyersion efficiency can be further improved by a sizable
lidity of the model to efficiencies below 15%2) For theh  5mount. The model provides a simple tool to extrapolate the
=2 um structure losses were neglected at the FF frequencyegyjts obtained with the numerical code to a number of pe-

as the number of periods is increased, such losses will Dg;,qs for which time consumption makes FDTD not suitable.
come measurable and can no longer be neglected. Neverthe-

less, it is reasonable to consider that, taking into account the
preceding restrictions, analytical results give a good estimate
of the conversion efficiency. In particular, a SHG conversion
efficiency of the order of 15% is predicted, with a FF power
of 600 W for structures oN<30 corresponding to a maxi-
mal total length of 7.5um.

V. CONCLUSION
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